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Abstract

Application marketplaces are the main software distribution mechanism for modern mobile devices
but are also emerging as a viable alternative to brick-and-mortar stores for personal computers. While
most application marketplaces require applications to be cryptographically signed by their developers, in
Android marketplaces, self-signed certificates are common, thereby offering very limited authentication
properties. As a result, there have been reports of malware being distributed through application “repack-
aging.” We provide a quantitative assessment of this phenomenon by collecting 41,057 applications from
194 alternative Android application markets in October 2011, in addition to a sample of 35,423 appli-
cations from the official Google Android Market. We observe that certain alternative markets almost
exclusively distribute repackaged applications containing malware. To remedy this situation we propose
a simple verification protocol, and discuss a proof-of-concept implementation, AppIntegrity. AppIn-
tegrity strengthens the authentication properties offered in application marketplaces, thereby making it
more difficult for miscreants to repackage apps, while presenting very little computational or communi-
cation overhead, and being deployable without requiring significant changes to the Android platform.
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1 Introduction

Online application stores or “markets” are becoming an increasingly important vector of software distri-
bution. For instance, Apple’s flagship MacOS X operating system is, since version 10.7, only distributed
through the Apple App Store, thereby entirely forgoing the traditional distribution channel – packaged opti-
cal media sold in brick-and-mortar stores. Likewise, the Google Chrome Web Store is a consolidated place
to download all extensions to the Chrome browser.

While their importance is growing, for personal computers application markets are a relatively recent
development,1 and still merely represent one of several alternatives. On the other hand, application mar-
kets have been the primary (if not the only, for most users) means of acquiring and installing software on
advanced mobile devices such as smartphones and tablets.

“Official” application markets for mobile devices, such as Google Play or the Apple App Store act as
a centralized software distribution point for a given platform, and allow users to find, download and install
applications through a single interface.

Besides official markets, a large number of third-party (or alternative) markets exist. Users may rely
on these alternative markets, for a variety of reasons, including the unavailability of the official market in a
particular country, name-brand recognition (e.g., Amazon’s Appstore), or to freely obtain applications that
require payment in the official market. Some markets are also locale specific, where existing applications are
modified and redistributed for localization purposes. For instance, popular applications may be translated in
languages that they do not natively support.

Markets adopt several techniques to provide users with confidence that they are downloading safe ap-
plications. First, usually, applications must be cryptographically signed so that their providers are authen-
ticated. Second, markets enforce policies to deal with malicious applications. Some markets (e.g., Apple
AppStore) vet applications prior to publication [11]. Others, such as Google Play, allow relatively un-
moderated publication, but react to identified malware by removing it both from the market and from all
(connected) devices that have already installed the malicious application.

Unfortunately, these techniques fall short of providing strong security guarantees. When application sig-
natures are certified by the market proprietor (e.g., Amazon and Apple markets), the user has to completely
trust the market proprietor to manage and secure the certificates. The fact that existing centralized vetting
systems have shown to be imperfect in keeping malware at bay [7, 8, 9] seems to indicate that the security
guarantees provided by such centralized systems are relatively weak.

In Google Play, the security guarantees are even weaker. Certificates are typically self-signed and, thus,
are not bound to any particular identity. Almost anybody can upload applications into the market; and it
may take time to realize that some harmful applications have been uploaded. Worse, some of the third-party
Android markets may not police malware at all. In fact, it may even be in a market’s best interest not to do
so, as the market operators could enjoy revenue from infected applications.

In other words, existing authentication mechanisms for market applications appear insufficient. For
instance, grafting viruses onto pirated software is certainly not a new attack; yet, the lack of proper authen-
tication allows miscreants to use such techniques to distribute malware through application markets.

In this paper, we focus on Android application markets, and present two main contributions. First,
through measurement experiments, we evaluate to which extent existing markets for Android devices fa-
cilitate malware installation. We build crawling mechanisms that identify a large number (195) of existing
Android application markets, and gather a total of 76,480 applications from these markets, including Google
Play (35,423 applications). From this application corpus, we show that application repackaging, in which

1The AppStore first appeared on MacOS 10.6.6 in Jan 2011.
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miscreants disseminate malware posing as legitimate, well-known applications, presents a significant threat.
By analyzing signing strategies used in alternative marketplaces, we show that some malicious markets
extensively reuse certificates to provide valid signatures on maliciously repackaged applications.

Second, we propose a simple authentication protocol for market applications, that can be immediately
deployed on Android, piggy-backs on the naming conventions used for Android packages and applications,
and would make it significantly more difficult for an attacker to perform application repackaging.

The remainder of this paper has the following structure. We first discuss application repackaging tech-
niques in section 2. In section 3, we describe our measurements on the incidence of malware in current
Android marketplaces, and show the threats posed by application repackaging. Then, in section 4, we
provide a novel application authentication mechanism and present a proof-of-concept mobile application,
AppIntegrity, which implements such a verification mechanism. We provide a security analysis of our mech-
anism in section 5, outline its limitations, and propose extensions to overcome these limitations. We discuss
related work in section 6. Finally, we conclude with a discussion and directions for future work in section 7.

2 Application Repackaging in Android

We next summarize how application repackaging is performed in Android. To do so, we first describe the
contents of an Android application, before turning to repackaging mechanics.

2.1 Android applications

In Android, applications are usually written in Java (although some have “native” C calls), and are distributed
as APK (Android package) files. Those APK files are in fact Zip archives, which contain compiled Java
classes (in Dalvik DEX format), application resources, and an AndroidManifest.xml binary XML file
containing application metadata. The APK also contains a public key and its associated X.509 certificate,
bundled as a PKCS#7 message in DER format.

Naming conventions. When creating a new project, the Android developer documentation dictates that a full
“Java-language-style” package name be used, and that developers “should use Internet domain ownership
as the basis for package names (in reverse) [4].” This creates package names such as com.google.maps
for the mobile Google Maps application. To avoid name conflicts, package names must be unique across
the entire universe of applications. Using reversed domain names theoretically limits potential namespace
conflicts to a developer’s own domain.

Signing applications. All Android applications must be cryptographically signed by the developer; an
Android device will not install an application that is not signed. Typical Java tools, such as keytool and
jarsigner, may be used to create a unique keypair and sign the mobile application.

In Android, the only key distribution mechanism used consists in bundling developer’s public key with
the application. Further, Android has no requirement for a keypair to be certified by a Certificate Authority
(CA). In fact, we observed that more than 99% of the 76,480 applications we gathered as part of this study
(see Section 3) use self-signed certificates.

In other words, the primary purpose of the keypair is to distinguish between application authors, but not
to provide any stronger security properties. In practice, keypairs are also used to 1) ensure that applications
allowed to automatically update are signed by the same key as the previous version, 2) potentially allow ap-
plications signed by the same key to share resources, 3) grant or deny permissions to a family of applications
signed by the same key, and 4) to remove all applications signed with the same key from the Android market
and potentially from all connected devices when one of these applications is flagged as malware [32].
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On the other hand, due to the absence of any certification authority or PKI, signatures on Android do not
provide any assurance about the identity of the signer. Shortly stated, Android ensures that the Facebook
application is correctly signed by somebody, but cannot prove the Facebook company actually signed the
Facebook application.

2.2 Application Repackaging

An existing application redistributed with a different signing key, often with functionality not present in the
original version, is said to be repackaged. Some, all, or none, of the application’s existing functionality can
be preserved in the repackaged version.

Applications can be repackaged for many reasons other than to distribute malware. For instance, a
repackager may simply wish to add advertising to an existing application to profit from somebody else’s
application. Application repackaging falls broadly in two classes: spoofing and grafting.

Spoofing. Mobile applications can simply be published under false pretenses, spoofing little or none of the
features a legitimate application would possess. To deceive the user, a malicious program may advertise
to be an existing application, or a nonexistent application that may plausibly exist, yet provide none of
the expected functionality. As previously shown in peer-to-peer networks [15] and search-engine result
poisoning [23, 27], this type of attack could flood a market with enough false positives to attract users.

As an example, in July 2011, the legitimate Netflix application only supported specific devices and ver-
sions of Android. Unsupported devices could not locate and install the official application in the market.
In October 2011, a fake version of the Netflix application was published in the official Android Market,
claimed to “support” all devices, and thus appeared to owners of devices that could not download the le-
gitimate application. The fake application displayed a plausible login screen, but then simply stole service
credentials. Once credentials were entered, the application uninstalled itself [10].

Grafting. To achieve the desired functionality of a legitimate application, an attacker may elect to graft
malware onto an existing application, and subsequently republish the modified application.

The attacker starts by downloading and extracting an existing application. To do so, she unzips the APK
archive to extract the application components (class files and manifest).

Then, she adds malware to the application, and repackages it. Adding malware may require to reverse
the DEX-formatted Java classes. While not entirely straightforward, tools such as undx [31], baksmali,
dedexer, or ded [18] can often successfully decompile .dex files to source code. DEX can also be
converted to a typical Java jar collection of classes using the dex2jar utility, at which point a typical Java
decompiler can be used.

In the quite common case in which the .dex file does not need to be fully reversed to source code, much
of the disassembly and repackaging process can be automated. For instance, apktool [3] can unpack and
repackage an existing .apk with two commands. apktool has several side effects that result in non-
required changes to the repackaged .apk. For instance, some files may be compressed in the repackaged
application regardless of whether or not original file was compressed. With automatic compression the
repackaged file may actually be smaller than the original despite the addition of malicious code. These side
effects may be undesirable for an attacker that wishes for the application to remain as similar as possible to
the original application.

In addition to the class files, the attacker may need to modify the AndroidManifest.xml, since
this is where application-level permissions are specified. This can be done using a tool such as AXML-
Printer2 [5]. For instance, the malware to be added to the existing application may require the INTERNET
or SEND SMS permissions, even if the permission is not specified in the original application.
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Last, prior to publishing a the new application to one or more markets, the attacker must cryptograph-
ically sign the application. The signing can easily be performed with standard Java tools, e.g., using
jarsigner. Since Android uses self-signed certificates, such signatures will pass installation-time checks.

3 Measuring the prevalence of
malware in markets

Each market may have different policies for policing applications. Google maintains a reactive policy in
the official Android market, but alternative markets may have a less effective policing policy or no policy
at all. To demonstrate the threat of application repackaging we investigated the presence of repackaged
applications in existing markets. In this section we discuss our measurement methodology to create a corpus
of alternative market applications, how we created a corpus of official market applications, and a description
of the resulting corpora.

3.1 Collecting applications in alternative marketplaces

In order to create a corpus of applications from alternative markets, we first conducted an experiment to
observe alternative distribution mechanisms.

We identified 194 alternative marketplaces by popularity based on search engine results. First we cre-
ated a list of candidate site seeded with search results for “alternative market android”,“third party android
market”,“free android applications”,“android app store”, and simply “android market.” We then expanded
the list of candidates to include the same strings translated to all 63 languages currently supported by Google
Translate. We manually inspected search results to prune candidate sites that did not actually deliver mobile
applications (many only offer meta-data, directing an interested user to then download the application from
the official market). During manual inspection of search results, we appended obvious links to other mar-
ketplaces to the list of markets. Perhaps the most important observation from the search results inspection is
that, unlike the official market, applications from some alternative markets can currently be downloaded us-
ing common, unauthenticated HTTP methods. In many cases the URL for applications is highly predictable
and can facilitate complete coverage, as in http://yadroid.com/?download=n where n is between
1 and 2696.

While an Android application is a Zip archive packaged in a certain way (see Section 2), there is no
guarantee that a given marketplace delivers applications to the device in this form. In fact, we observed many
other methods. For example, one site delivers applications as expected, but the file extension is “.ipa”
instead of “.apk.” Similarly other sites also deliver the application archive as expected but with no file
extension all, and are instead accessed by a URL such as http://yadroid.com/?download=260.
Yet others will “double package” the application for delivery, resulting in a Zip (or other) archive that
contains a Zip file that is an application.

We performed recursive decompression of archives, and tested each file we eventually obtained to de-
termine whether it was a ZIP file that contained the AndroidManifest.xml binary XML file. If so, we
classified it as a valid Android application.

Corpus size. We used the above described collection and pruning process to collect 41,057 applications
from 194 alternative markets in October 2011. The identification of markets and subsequent downloading
of applications is biased by popularity, both by using search results to identify marketplaces, and by the
likelihood that popular applications are made easier to locate by each marketplace interface.
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3.2 Collecting applications from the official Android market

The official Android market is intended to only be accessed directly from Android devices. Even when “in-
stalling” an application using the online interface at market.android.com, a signal is pushed directly
to a device associated with logged-in user.

Even thought the Android framework is open source, many software components found on Android
devices are proprietary, including the official Android market. We created a protocol-compatible tool that
facilitates granular access to applications in the official market. We designed the tool iteratively by reverse-
engineering the market components found on an Android device, observing network traffic during a market
transaction, and by observing server responses after manually adjusting protocol parameters.

The official market protocol requires authentication and a device identifier. To authenticate to the service,
we created a new user using an actual smartphone, and extracted the device identifier from the device. The
username, password, device identifier, and SDK version are used to establish a market session. This session
is similar to the session status that would occur when opening the “Market” application, the official client,
on an Android device.

Once a session is established the server is queried for a list of application categories (e.g., Finance,
Education, Medical). Much like the official client, server results vary depending on several parameters. By
manipulating these parameters, a client can obtain different results to mimic views present in the official
client such as “Featured” or “Top Free” in any category. For example, applications can be ordered by any of
POPULAR, NEWEST, FEATURED, NONE or the field can be omitted.

In addition to mimicking the capabilities of an official client, we are able to manipulate additional
parameters, such as the wireless carrier associated with this client. A physical device is typically associated
with a single carrier and the official client simply utilizes the carrier associated with the device. We can
enumerate sets of carriers impersonating devices on several networks by altering the Mobile Country Code
(MCC) and Mobile Network Code (MNC) as defined in ITU E.212. For example the United States has
MCC’s 310-316, and MNC 260 specifies T-Mobile. We can iterate 310012, 310410, 310120, and 310260 to
impersonate devices from Verizon, AT&T, Sprint and T-Mobile, respectively.

The ability to impersonate devices from various networks is important for coverage as some applications
may only be made available to customers on certain networks. Likewise, certain applications only exist for
certain types of device hardware, geographic region, and software versions of Android. Any particular
combination of market parameters will currently return a maximum of 800 results, so that it is not possible
to simply iteratively collect all applications in the entire market.

The actual applications are not downloaded through the existing market session. Market query results
contain meta-data about applications. Some of this meta-data is available in the official client such as the
title, cost, and review ratings. Other meta-data is not visually displayed, such as the application’s AssetID.
The AssetID is needed to download applications independent of the existing market session. The AssetID
is approximately 20 ASCII digits long and must be precisely specified in order to download the application.

When attempting to download too many applications over a period of time a the server may not permit
further downloads, temporarily blocking connections. We observed that HTTP 503 errors precede such
blacklisting, and accordingly implemented a back-off procedure.

Corpus size. To create our corpus, we collected free applications from each application category as acces-
sible from the United States on four carriers: Verizon, AT&T, Sprint and T-Mobile. We additionally iterated
through known Android and SDK versions, eventually collecting 35,423 applications in October 2011. Be-
cause we collected by category, the 35,423 collected applications are biased by popularity in each category.
Furthermore, due to the complexity of automating the payment protocol, we only collected free applications.
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3.3 Results

We next discuss the prevalence of malware in the marketplaces we have measured. From our collected cor-
pora, we identify known malware attributable to each marketplace. We also offer particular measurements
(e.g., on certificate reuse) from the corpus to inform discussion of the protocol provided in Section 4.

To determine a lower bound on malware present in each market, we scanned each file with multiple
antivirus products, through the VirusTotal interface [1].2 VirusTotal is a service that offers file scanning
through 42 different antivirus products by vendors such as Symantec, McAfee, Kaspersky, and TrendMicro.
Despite the large number of antivirus products being used, malware detection in this manner remains a very
conservative lower bound as mobile malware detection is less mature than desktop malware detection. Some
reports show that many mobile anti-virus detection rates very low: between 0 and 32% [28]. It is highly
unlikely that any so-called “zero-day” malware would ever be detected under this procedure. Therefore, the
actual delivery of malware from marketplaces is quite likely a larger problem than we show.
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Figure 1: Alternative Market Malware: Total applications and detected malware per market. Each point
corresponds to one measured market. Points closer to the dashed line deliver higher percentages of malware.

Some alternative markets appear to be completely absent of malware, but a few markets distribute mal-
ware almost exclusively. In the scatterplot of Figure 1, each market we crawled corresponds to one point,
whose x-coordinate denotes the total number of applications in that market, and whose y-coordinate denotes
the number of applications detected as malicious in this market. The dashed line in Figure 1 represents the
threshold where every application sampled from a market would be detected as malicious (and hence, no
point can be above that line). Several points approach this line, demonstrating that our naive sampling
identified a number of markets which almost exclusively distribute malicious applications. Particularly pre-
occupying is the case of the markets in the top right corner of the graph. Not only do these markets have
very high percentage of infected applications, but they also provide a large number of applications.

We can further use this data to attempt to exhaustively classify all Android malware as repackaged or
some other type of malware. After eliminating “potentially unwanted programs” detected by anti-virus, such
as spyware, we can concisely catalog all existing malware as of November 2011. We observed 55 different
families of malware, 40 of which (or 73%) (such as those enumerated in [20] and more exhaustively in [36])
employ some type of repackaging or spoofing. We note that many early Android malware families as well
as the most recent employ some type of repackaging.

2Due to limitations to the VirusTotal interface, applications larger than 20 MB were not scanned.
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As another datapoint, in [36], the authors use a combination of package name comparison to applications
found in the official market and manual analysis to classify repackaged applications. They similarly find that
86% of unique samples in their Android malware corpus are repackaged. The reported number is different
from our observation for two reasons: First, in [36] the described corpus is entirely comprised of malware
samples, many of which belong to the same family leading to a non-uniform distribution across malware
families. Second, the definition of repackaged in [36] is slightly different and does not include the category
we term spoofed in Section 2.2.

We next look at possible indicators of malware distribution strategies. We first measured the number
of applications which provide package names that form valid domains. To do so, we parse each package
name with the Perl module Data::Validate::Domain. We find that 83% percent of the applications
originating from the official marketplace have package names that, when reversed, represent a well-formed
domain, following Google’s suggestions (see Section 2) for package naming conventions. Interestingly,
applications from alternative markets exhibit a slightly higher rate at 86%. This seems to indicate that exotic
naming conventions are not indicative of malware. On the contrary, we found that, in markets with the
highest percentage of malicious applications. applications tend to comply more with the proposed standard
naming conventions. In hindsight, this does not come as a surprise: malicious applications designers have
incentives to make their applications “blend in” as much as possible.

Figure 2 shows the distribution of application sizes for the official and alternative Android markets.
Approximately 40% of all applications are greater than 1 MB. Alternative market applications are generally
slightly larger than those in the official market, but the size distribution between the market types is clearly
similar.
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Figure 2: Application Sizes: CDT of market applications

Finally, we attempt to characterize which signing strategies are being used in alternative marketeplaces.
The lack of a PKI and general lack of proper certificate validation does not encourage adoption of best prac-
tices. Indeed the near ubiquitous use of self-signing certificates enables the publisher to adopt a number of
different signing strategies. For instance a publisher could use the same certificate to sign every application
they publish, or could use a different certificate for each version of each application. Shortly stated, certifi-
cates do not provide any guarantee on the application integrity, or origin, and patterns of certificate misuse
may be evidence of application repackaging.

We observed heavy re-use of signing certifications in our collection. Indeed, only 52% of certificates
from the official market were unique. The distribution of certificates is not uniform, as some certificates are
used as many as 693 times, while others are only used once. In alternative markets, the signing strategies
vary drastically. Some markets exhibit distributions similar to the official market, while others use a single
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signing certificate.
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Figure 3: Certificate Reuse in Alternative Markets: Percentage of apps which share the same certificate
(bars) overlaid with the percentage of malware (line plot). Each point corresponds to one measured market.
Markets are ranked by decreasing reuse of certificates. Only the top 64 markets (in number of applications)
are presented.

Figure 3 plots, for each market among the 64 markets that distribute the most applications, the highest
percentage of applications in the market that are signed using the same signing certificate. We overlay
the plot with a line showing the corresponding percentage of malware in the same markets. Strikingly,
almost all the alternate marketplaces with high percentage of malware appear to significantly re-use signing
certificates. Calculating the Pearson correlation coefficient between the percentage of malware, and the
percentage of certificate reuse, across all markets yields ρ ≈ 0.64. In the seediest markets with close
to 100% known malware, all applications are signed using the same signing certificate. In this case, the
remaining applications to make up the 100% are quite likely malware that is not yet detected by anti-virus.

In sum, these results provide clear evidence that malware in alternative markets is a problem we can-
not neglect. As a point of comparison, in the official market, we discovered 119 applications containing
malware, or 0.003% of all applications we surveyed. While certainly very low, this number needs to be
taken with caution: these are the applications that were detected by anti-viruses as being malicious, and are
therefore a strict lower bound on the total amount of malware actually present in the official Android market.

4 Toward Application Verification

Regardless of application vetting policies, it is possible that an application can be repackaged and published
into marketplaces that users will frequent. Yet users have no way of knowing if an application claiming
a particular origin is in fact created by the assumed author. Here we present a very simple protocol for
end-to-end application verification, and discuss an example implementation. The idea behind the protocol
is that, while not a panacea against all attacks (see Section 7) it raises the bar that attackers have to clear
to be able to carry out spoofing attacks, while being essentially freely deployable with the current Android
infrastructure.

In the context of this paper, verification means that the application is authenticated, and that, as a result,
its integrity against repackaging by third-parties is guaranteed.
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4.1 Protocol

Prior to publishing, an application must be cryptographically signed. This signing makes use of the private
key of a keypair generated by the developer. The existence of a keypair provides developers and users with
the primitives required to perform other PKCS actions. In particular, the protocol described below takes
advantage of the well-known ability to verify a signature. That is for a keypair: secret signing key ssk and
public verification key pvk, that the signing of data d results in signed data sd:

sd = signssk(d)

Furthermore, that signed data can be verified using only the associated public key:

verifypvk(sd) = true

It is assumed that the ssk is selected uniformly at random from the set of all possible keys, and that
without the ssk it is computationally infeasible create an sd′ that can be verified.

If the developer makes the pvk widely available, it can be used to locally verify signed applications.
In order to deter developer impersonation in repackaged applications, the pvk should not be published via
the marketplace from which the application is obtained. If this were permitted, unscrupulous persons could
simply continue to repackage applications and provide new pvk′ keys along with new applications when
published. Instead we propose that the author’s pvk be stored in a predefined location on the author’s web
server or use methods similar to Domain Key Identified Mail (DKIM) [25] to provide the pvk via DNS (or
both). In both cases the verification is tied closely to the DNS controlled by the publisher. Again, to deter
repackaging, this DNS location must not be specified in a hidden manifest, but must be closely coupled to
information presented to the user. As mentioned in Section 2, application package namespaces “should use
Internet domain ownership as the basis... (in reverse).” Therefore, by reversing the package name, a URL
can be constructed to locate the pvk.

If developers honor the direction to name packages appropriately (83% of applications in the official
market already conform to this convention), the pvk can be unambiguously located relative to the URL cor-
responding to the package name. Suppose that, by convention, the pvk is stored in a file android.cert
at the root of the domain. For instance, an application with the package name com.facebook.katana
would be signed using an ssk that has an associated pvk available at http://facebook.com/android.
cert. The use of domain ownership for key publishing permits the use of self-signed certificates making
this protocol immediately deployable. The use of CA’s and other PKI infrastructures remain (at this point)
optional.

Propagating key information via DNS has certain performance benefits compared to storing the public
verification key on a webserver, which must serve the key to every mobile device at verification time. Both
methods are however susceptible to various attacks which are discussed in Section 5.

By decoupling cryptographic signing from the distribution mechanism, the application can be verified
independent of how an application is obtained. Applications obtained via unmoderated file sharing forums,
will still bear a package name plausible to the user (e.g., com.facebook.katana), and the device will
attempt to verify the application with the legitimate Facebook pvk. If the application had been repackaged,
the verification will fail. If the verification succeeds, it was signed by the owner of the facebook.com
domain.

Application verification should take place as part of the installation process. Install-time verification can
prevent undesirable applications from ever executing on the mobile device. Figure 4 shows a timing diagram
of the entire verification process. As previously described, the publisher’s keypair is created orthogonal to
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Figure 4: Verification protocol: Network Diagram

verification. First a user locates an application in some mobile marketplace and the application is down-
loaded to the mobile device via whatever mechanism the marketplace supports. Once the entire application
is downloaded, the embedded signatures can be checked to be well-formed (locally on the mobile device).
Next the package name is extracted from the application and reversed in order to determine the location of
the pvk. The pvk is retrieved from the publisher’s server (or from DNS). The application is then verified
using the pvk. If the verification succeeds the application is installed using the typical platform installation
process. If verification fails, the application is not installed. Of course, when applications fail verification
the protocol could be modified to permit the user to install the application anyway, or to upload the file to a
security team for analysis.

Publishers may need to update to a new, legitimate keypair resulting in a new pvk becoming available.
Similarly, if a publisher’s ssk is compromised a repackaged application may be installed with an pvk that
is thought to be valid at install time, but was later found to be compromised. For these reasons, application
verification may also be performed periodically or on-demand. Similar to the end result of failed verification
at install time, a failed verification in this case would likely result in the uninstallation of an application.

A verification process such as described here is independent to any vetting process imposed by a market
policy. The cryptographic verification simply demonstrates that an application is what the publisher intended
to provide to the consumer. It makes no attempt to determine if the behavior of an application is malicious.

With this protocol the end device is able to verify that the application is exactly what the publisher in-
tended for the user. In the physical world, in addition to the trusting integrity of the store, there is some
independent binding to the creator of the software. This binding takes many forms such as product pack-
aging, branding, holographic CDs, and other anti-piracy technologies. The protocol we propose, called
AppIntegrity, enables similar binding to take place on modern application markets, creating a way to bind a
website owner to a particular application.
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Publishers currently do not make the pvk available, as a consequence it is not possible to fully test the
mitigation capabilities of AppIntegrity. However, our measurements (by domain validity checks and manual
malware analysis) and the repackaging classification techniques in [36] suggest that AppIntegrity may see
great success in mitigating current malware.

4.2 Implementation

The protocol described in Section 4.1, is realized in proof-of-concept applications designed to run on any
computer and as an Android application, which we call AppIntegrity. Android’s architecture permits the
entirety of an application to be observed by other applications. Accordingly, AppIntegrity registers a handler
for the PACKAGE ADDED3 intent that performs verification whenever new applications are downloaded.
Since most publishers have not made public keys available, a failed verification results in giving the user the
choice to uninstall the application.

AppIntegrity takes advantage of several Android features:

1. Application package names are intended to be unique and based upon domain ownership of the de-
veloper.

2. Android applications have read access to other applications. While each application can store data in
a private area, the application itself may be read by other applications. Thus a verification program
has the ability to obtain package name and signature information from other applications.

3. Android applications are written in Java which has extensive cryptographic libraries that can be used
to verify signatures.

4. The Android documentation specifies RSA when generating a private key. The use of RSA in key
creation results in a SHA1withRSA (see Figure 5) signature, which is compatible with the existing
specification for DKIM (DKIM is defined to use RSA-SHA-1 or RSA-SHA-256 for signing and
verification). As seen in Table 1 the majority of applications we observed use one of the two DKIM
compatible algorithms.

$ keytool -printcert -file CERT.RSA
Owner: CN=First Last, OU=Unk, O=Unk, L=City, ST=State, C=US
Issuer: CN=First Last, OU=Unk, O=Unk, L=City, ST=State, C=US
Serial number: 4d895f96
Valid from: Tue Mar 22 22:48:54 EDT 2011 until: Sat Aug 07 22:48:54 EDT 2038
Certificate fingerprints:
MD5: 07:E4:51:41:E8:80:92:97:F9:6F:AF:BF:57:2F:28:2A
SHA1: D5:A0:3D:A4:E5:0F:D7:9E:B3:53:95:83:8C:CA:AB:A5:EB:E2:C4:29
Signature algorithm name: SHA1withRSA
Version: 3

Figure 5: Android signing key: keytool output for signing key

Future implementation could take many forms. To fully realize the protocol shown in Figure 4, the
Android framework needs minor modification to the install process. Either verification must be built into
the package installation process or a new intent needs to be broadcast post-download prior to package install.
Meanwhile, the proof-of-concept application may be downloaded from (anonymous URL). Device carriers

3Note that this isn’t exactly the same as the described protocol, since the application is technically already installed by the
time the PACKAGE ADDED intent is broadcast. This intent is the nearest to the desired functionality that a typical, unprivileged
application can achieve.
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Algorithm Official Alternative
MD5withRSA 9.784% 7.553%
SHA1withDSA 2.662% 2.743%
SHA1withRSA 87.458% 87.157%

SHA256withRSA 0.091% 2.543%
MD2withRSA 0.005% 0.004%

Table 1: Signing Algorithms observed in markets

or manufactures may choose to install a verification application in such a way that the user can’t uninstall it,
forcing verification to occur.

4.3 Performance Evaluation

Minimal network overhead is crucial as many carriers now have limited data plans. Currently, a typical RSA
key found in the official market averages 922 bytes (0.0008 MB). Given the current distribution of applica-
tion sizes (as shown in Figure 2), the additional network overhead introduced by verification is marginal.
Figure 6 is scaled to show the only appreciable overhead introduced by obtaining the certificate. As seen
in the Figure 6, less than 4% of applications would exhibit significant overhead relative to downloading the
application. The applications in question are simply so small that the additional 922 bytes is significant,
however it is extremely likely that the user is already downloading many other [24], larger applications
further reducing any concerns of network performance degradation.
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Figure 6: Size Overhead: Less than 4% of applications would exhibit appreciable overhead (plot magnified
from official market plot in Figure 2).

Similarly, processor use directly affects battery life on mobile devices [11], and as such, excessive re-
source use could hinder adoption. Since devices already perform cryptographic signature verification the ad-
ditional verification is not significantly different. Currently a manifest (different that the AndroidManifest.xml)
is stored in a special META-INF directory along with the public keys in the .apk. The device currently
verifies the signatures stored in the manifest using the embedded public key. With our proposed protocol the
same key would be obtained dynamically, but the cryptographic operations would remain the same.

To encourage adoption, public keys could still be included in the .apk files, and actually both keys
(which may be identical) could be used to verify the application. This additional verification would result in a
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linear increase in processing time as each .apk component is verified twice. If the protocol is integrated into
the Android package installer, there would effectively be no additional overhead over the existing installer.

The lightweight cryptographic verification of AppIntegrity will likely outperform other types of “finger-
print” or “signature”(not cryptographic signature) based security solutions. In particular, anti-virus, sym-
bolic execution, anomaly detection [14], static analysis [29, 30] would all likely require extensive processor
and/or memory requirement which are not desirable on a resource-constrained mobile device.

Since little or no modification is required to to the Android framework, there is negligible network and
processing overhead, and there is no additional burden to implement a PKI, AppIntegrity can be deployed
to Android with little cost.

5 Security Analysis

The primary benefit of AppIntegrity is the ability to verify the integrity of a published application inde-
pendent of how the application is obtained. Under the current model, an attacker needs only to succeed in
getting malware onto a device. Typically this is achieved by publishing a malicious application to a market-
place and allowing users to locate and install the application. AppIntegrity significantly increases the effort
required for a successful attack. Under this new model, the attacker must also either obtain the original
publisher’s secret signing key, be in control of the publisher’s web server, or commit a man-in-the-middle
(MitM) attack on the publisher’s DNS records and/or web server. In all cases the attacker must now conduct
two successful attacks, and the secondary attack requires more effort than application repackaging.

Man-in-the-middle attacks that target the mobile device may be more difficult to conduct than such an
attack on a traditional computer. Modern smartphones and tablets can communicate over several medium.
A successful MitM attack on the client will either need to predict the specific media that will be used, or
will need to conduct simultaneous MitM attacks on all nearby WIFI, 2G, 3G and 4G networks.

The official market enforces unique package names, which incidentally lightly deters the republication
of repackaged applications back to the market. An application with exactly the same package name may
not be published. In order to republish in the official market, some existing malware, such as DroidDream-
Light2, uses capitalization differently in package names. For example, com.gb.CompassLeveler vs
com.gb.compassleveler. Since DNS does not preserve case, the AppIntegrity verification would
resolve to the legitimate key, and fail.

5.1 Limitations

AppIntegrity would benefit from a few minor design changes to the Android platform: permitting additional
privilege to the verification software, enabling actions to perform prior to application install and clearly
displaying package name information to users prior to install. The proposed protocol does make several
assumptions about the user, and if the user is deceived the effectiveness of AppIntegrity suffers.

Domain name deception. Once a user has located a particular application that they are interested in in-
stalling, the installation interface must clearly display the package name (or derived domain) to the user. The
user may or may not recognize the application name, package name, developer, etc. Even when the user does
recognize the application name and developer, it is up to the user to detect typosquatting, the intentional reg-
istration of domain misspellings [26]. For example, if the user installs a repackaged Google maps look-alike
that has a package name com.g00gle.maps the certificate will be retrieved from maps.g00gle.com
and will cryptographically verify. Without an external validation service for URLs (e.g., PKI, reputation
system), such attacks will remain possible.
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Domain recognition. Similarly, many users recognize names such as Google, Facebook, etc but the vast
majority of applications are created by less recognizable publishers. One may argue that as an application
becomes popular, users are more likely to recognize the publisher (and associated domain). However, the
problem of unrecognized publishers remains. AppIntegrity provides a foundation that could be used to
create additional protocols or services to help solve this problem. For instance, AppIntegrity would provide
assurance that a given publisher produced a certain application, and an external vetting service could assist
in confirming that this publisher is reputable.

To address both domain name deception and domain recognition, one could reasonably imagine such a
service building upon Perspectives [35], with notaries voting on the reputation of a given publisher. Such an
architecture is already deployed as a Firefox browser add-on (Convergence, [33]), and the same functionality
could probably be implemented on Android devices.

Lack of Privilege. The current AppIntegrity application could be uninstalled by a user or potentially by
malware. A previously mentioned, a manufacturer or wireless carrier could install AppIntegrity in a way
that makes user uninstallation difficult. However, as with most security properties, rooting or jailbreaking
the device undermines this added security.

Prior Infection. Devices that are already infected with malware that has elevated (root) privileges are subject
to other attack classes, such as drawing over the existing user interface. In these situations, AppIntegrity
only assists in preventing malware from entering the device, and is subject to all the same issues as typical
software.

5.2 Keeping Private Keys Private

As with most PKCS structures, the cryptographic properties provided by the keypair require the private key
to remain secret, known only to the owner. Any other party that knows a user’s private key can impersonate
that user. For these reasons, users typically create their own cryptographic keypair. Contrary to this conven-
tion, Amazon’s Appstore (one of the commercially-backed Android markets) supplies an account-unique
key to the publisher [2]. In this model, Amazon could impersonate any application publisher, and a security
breach of the Amazon market would result in all keypairs being compromised. We encourage developers to
exercise the option to request the use of a non-assigned key for application signing.4 As stated in section 4.1,
to enable legitimate verification, public keys should not be stored alongside applications in a marketplace.

Similarly, smartphone or tablet users that have “rooted” their device often install entire new operating
system images known as “custom ROMs.” These ROMs are created and made available by enterprising
developers such as the Android Open Source Project (AOSP). The developers of these ROMs may chose to
publicly publish associated private keys. Since the private keys are widely available, no identity can be bound
to anything signed by the key. Malware, such as jsmshider [6], may take advantage of this cryptography
faux-pas.

Under a model that encourages self-signed certificates, such as the current Android model, the burden
of securing the private key falls solely on the publisher. Application publishers that do not properly secure
their secret signing key risk others using their identity to publish applications. Under the protocol outlined
in section 4.1, loss of the private key would allow an attacker to modify an application and have the modified
application successfully verify.

4Developers may request to use a non-Amazon key by submitting a request through the Amazon AppStore Developer Portal
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6 Related Work

Spoofing attacks similar to the Netflix malware were theorized by Felt et al. in [21]. Felt et al.’s work [21]
predates the recent Netflix spoofing malware which very closely mimics the Facebook attack described in
the paper. Additionally Felt et al. also provide a survey of much of the mobile malware discovered form
2009 to 2011 in [20].

In [34], Vidas et al. observe application repackaging as one type of an “unprivileged attack.” The class
of unprivileged attacks is one part of a greater taxonomy targeting Android devices. Vidas et al. also observe
that malware is often present in alternative (“black”) markets and such applications often “offer no additional
value to the consumer.” These observations are confirmed in our alternative market corpus discussed in
Section 3. Burguera et al. also cite the repackaging and distribution in alternative markets as evidence
for the need of their primary contribution in [12], which is a system for crowd-based behavioral malware
detection. Both Vidas et al. and Burguera et al. observe that applications are signed and the current signing
process in no way inhibits repackaging and republication of applications.

Zhou et al. conducted alternative market research focusing on four alternative marketplaces [37], and
have found a significantly smaller percentage of malware than we observed. Different from Zhou et al.’s
study, we investigate a larger number of application marketplaces, and look at possible indicators of sus-
picious markets (e.g., extensive reuse of identical signing certificates). In another difference, Zhou et al.
present a new tool for re-actively detecting malware on found in markets, where AppIntegrity strives to
proactively prevent the installation of software signed by those other than the originator.

In [36], Zhou et al. describe a malware collection consisting entirely of Android samples. The authors
provide measurement of the malware collection and describe the “evolution” of malware by studying related
samples chronologically. The authors also find a large amount of application repackaging and provide mea-
surements of activation mechanisms, secondary payloads, and permission used by malicious applications.

Chen et al. [13] use application metadata to identify web applications which the authors then provide
a means of app isolation. Chen et al. reference the Chrome Web Store which allows “verified apps.” The
procedure for obtaining the “verified” icon in the store is to pay a $5 fee and the application developer must
verify domain ownership via Google’s “webmaster tools.” The term “verified” is used differently here, as
the verification is proven to the market which then assures the consumer. The additional assurance provided
by proving domain ownership is likely useful as a means to increase application use and market reputation,
but is somewhat orthogonal to the end-to-end integrity provided by AppIntegrity.

Enck et al. describe a lightweight application certification service, Kirin [19]. This service forces appli-
cations to pass several rules at install-time, such as the absence of permission combinations the rule creator
deemed dangerous. AppIntegrity could possibly be implemented as a feature of Kirin, or independently as
described above, in addition to Kirin.

AppIntegrity focuses on ensuring end-to-end integrity for applications, and makes no attempt to analyze
the inner workings of an applications or otherwise protect the user from applications that are malicious from
origin. For this reason it makes sense to pair AppIntegrity with taint tracking systems such as TaintDroid [17]
or PiOS [16] in order to detect privacy leaks. Similarly, Hornyack et. al have retrofitted Android [22] in a
way that permits executing existing applications in a safe way.

7 Discussion and Future Work

AppIntegrity does not require any changes to the current developer build process for Android. The ap-
plication structure and cryptographic signing are used in exactly the same manner as currently employed.
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Similarly AppIntegrity is designed to make use of the self-signed keys widely used by Android developers.
As shown by the reference implementation provided for Android, AppIntegrity can be immediately adopted
without the need of a large PKI system.

If an entity desires the added value of a trusted third party verifying developer entities, a PKI can be
applied in addition to the protocol described in Section 4.1. Again Android has features that facilitate
this, as applications can be signed by multiple keys, allowing for an application to be signed by a market
proprietor in addition to the developer. Additional signing by the market proprietor is akin to physical store
reputation, in both cases the market is certifying that the software obtained from the market is legitimate.
Of course, a more traditional PKI model could be imposed where a developer key is signed by a third party
who also maintains a registry of developer public keys.

We hope that developers elect to publish their public keys as we describe in Section 4.1. In order to
encourage adoption, we hope that Google will adjust the Android developer documentation and effectively
make public key publication part of the standard developer account setup.

AppIntegrity is still compatible with alternative markets. Applications that are republished via alter-
native markets can be downloaded and verified by a user who can be confident that the installed software
is what the developer intended for delivery. Similarly, AppIntegrity would be compatible with “private
markets” given that the devices that have the private markets provisioned have network access to protected
domain spaces. Consider a “secure Android” under development by a government entity, as long as de-
vices can access the government network (via VPN for example), certificates can still be retrieved from the
appropriate URLs and verification can be performed.

Even though our reference implementation and related discussions largely focus on Android, AppIn-
tegrity can leverage existing application signing for many mobile platforms, and indeed application deliv-
ery mechanisms for traditional PCs. The most common mobile consumer platforms: Android, iOS, and
Symbian all already use application signing in some way, and can benefit from a verification system like
AppIntegrity.

Throughout this text we have framed the use of AppIntegrity on terminal devices, such as smartphones.
Additional verifiers could be used to embody trust in other ways. For example, a third party could monitor all
the public keys found in applications and resolve and verify these keys with the keys found the applications
respective domains. The third party could provide a “verified” seal similar to services for websites available
today. Similarly a market might proactively and/or periodically verify applications that are submitted for
publication.

AppIntegrity relies upon public keys being readily available and bound to an entity via domain owner-
ship. The availability of these keys could complement other application market functions such as application
revocation. Currently when malware is identified in the Android market, both the publisher and the con-
sumer are at the mercy of Google to remotely uninstall applications from infected devices. By extending
our presented protocol to verify applications prior to execution, disabling of malware can be performed by
either the market proprietor (e.g. Google) or by the domain owner (e.g. the publisher).

8 Conclusion

Application markets are now commonplace for mobile devices. We have shown that not all markets are
created equal: quite the opposite, in fact, as some distribute malware almost exclusively. Most of this
malware is repackaged in some way giving victims something desirable to execute.

By analyzing signing certificate strategies we observed that markets that deliver the highest percentage
of malware are also those that reuse signing keys the most, unilaterally across the marketplace in fact.
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In order to mitigate the threat of repackaging, we present an end-to-end verification protocol, AppIn-
tegrity, that facilitates cryptographic verification between the software creator and the end consumer. The
protocol is realized in reference implementations for PC and Android devices, but is applicable to other
mobile frameworks and application markets.

The cost of adoption for AppIntegrity is very low. The minimal network and local resource use is ideal
for the constrained environment of mobile devices. Furthermore, the end-to-end protocol can be used with
existing official and alternative markets alike.

Relating to Android in particular, AppIntegrity requires no changes to the existing Android development
process. Minimal changes to the Android framework could enhance the ability for AppIntegrity protect
users, but even when used with the current version of Android, AppIntegrity can provide added safety by
rapidly uninstalling unverified applications, and providing building blocks for future protocols and services.
By binding public keys based on domain ownership, AppIntegrity has the ability to leverage PKCS without
the need for a complicated PKI, further contributing to making AppIntegrity rapidly deployable.
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